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Review of micromachined optical
accelerometers: from mg to sub-μg
Qianbo Lu1,2†*, Yinan Wang3†, Xiaoxu Wang3, Yuan Yao4,
Xuewen Wang1,2 and Wei Huang1,2*

Micro-Opto-Electro-Mechanical  Systems (MOEMS)  accelerometer  is  a  new type  of  accelerometer  which  combines  the
merits  of  optical  measurement  and Micro-Electro-Mechanical  Systems (MEMS) to enable high precision,  small  volume
and anti-electromagnetic disturbance measurement of acceleration. In recent years, with the in-depth research and de-
velopment of MOEMS accelerometers, the community is flourishing with the possible applications in seismic monitoring,
inertial navigation, aerospace and other industrial and military fields. There have been a variety of schemes of MOEMS
accelerometers, whereas the performances differ greatly due to different measurement principles and corresponding ap-
plication requirements. This paper aims to address the pressing issue of the current lack of systematic review of MOEMS
accelerometers. According to the optical  measurement principle,  we divide the MOEMS accelerometers into three cat-
egories: the geometric optics based, the wave optics based, and the new optomechanical accelerometers. Regarding the
most widely studied category, the wave optics based accelerometers are further divided into four sub-categories, which is
based on grating interferometric cavity, Fiber Bragg Grating (FBG), Fabry-Perot cavity, and photonic crystal, respectively.
Following a brief  introduction to the measurement principles,  the typical  performances,  advantages and disadvantages
as well as the potential application scenarios of all kinds of MOEMS accelerometers are discussed on the basis of typic-
al demonstrations. This paper also presents the status and development tendency of MOEMS accelerometers to meet
the ever-increasing demand for high-precision acceleration measurement.
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Introduction
As  graduations  of  a  scale  for  acceleration,  velocity  and
position  measurement,  accelerometer  is  not  only  a  key
component  of  the  inertial  navigation  system,  but  also
plays a vital role in a broad spectrum of applications such
as automobile safety, earthquake monitoring, gravity de-
tection,  heading  indication,  attitude  reference.  With  the
rapid development of microelectronics and micro-manu-
facturing technology,  high  performance  and  highly  in-

tegrated  MEMS  accelerometers  have  become  a  big  class
of accelerometers,  which covers the applications in con-
sumer electronics,  industry,  medical  treatment,  etc.  Due
to  the  growing  demand  for  higher  performance  and
greater  functionality,  MOEMS  accelerometers  emerged
at the right moment, combining the advantages of optic-
al detection and traditional MEMS accelerometers. Com-
pared  to  conventional  MEMS  accelerometers,  MOEMS
accelerometers  are  usually  with  advanctages  of  high 

1Frontiers  Science  Center  for  Flexible  Electronics  (FSCFE),  Shaanxi  Institute  of  Flexible  Electronics  (SIFE)  &  Shaanxi  Institute  of  Biomedical

Materials  and Engineering  (SIBME),  Northwestern  Polytechnical  University,  Xi'an  710072,  China; 2MIIT  Key  Laboratory  of  Flexible  Electronics

(KLoFE),  Northwestern  Polytechnical  University,  Xi’an  710072,  China; 3The  Key  Laboratory  of  Information  Fusion  Technology,  Ministry  of

Education, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China; 4Wuhan National Laboratory for Optoelectronics-

Huazhong University of Science and Technology, Wuhan 430074, China.
†These authors contributed equally to this work.
*Correspondence: QB Lu, E-mail: iamqlu@nwpu.edu.cn; W Huang, E-mail: iamwhuang@nwpu.edu.cn
Received: 17 August 2020; Accepted: 23 September 2020; Published: 25 March 2021

Opto-Electronic 
Advances 

Review
2021, Vol. 4, No. 3

200045-1

© 2021 Institute of Optics and Electronics, Chinese Academy of Sciences. All rights reserved.

https://doi.org/10.29026/oea.2021.200045
https://doi.org/10.29026/oea.2021.200045


precision, fast response, resistance to electromagnetic in-
terference, and  the  ability  to  work  in  harsh  environ-
ments. Therefore,  they show promise for broad applica-
tion prospect in inertial navigation, geophysics and oth-
er  fields  that  require  high  sensitivity  and  precision,  and
are also the trend of future accelerometers development.

Various  MOEMS  accelerometers  have  been  reported
in past decades, yet a systematical review of the MOEMS
accelerometers  has  remained  elusive.  In  this  review,  we
mainly focus  on  the  measurement  principle  and  per-
formance  of  state-of-the-art  MOEMS  accelerometers,
and divide them into several categories according to the
optical measurement principle. By taking typical demon-
strations  as  examples,  the  merits  and  disadvantages  are
presented  here,  thereby  drawing  a  big  picture  for
MOEMS  accelerometers,  along  with  their  application
prospect and development tendency.
 

Requirement analysis of MOEMS
accelerometers
The application of MOEMS accelerometers spans a wide
variety  of  areas,  while  different  application  scenarios
have different  requirements  on  performances.  As  illus-
trated in Fig. 1,  for  example,  microgravity  detection1 re-
quires extremely high acceleration sensitivity (sub-μGal),
excellent long-term stability and superior low frequency
response,  inertial  navigation  system2 requires  low  noise
level and good zero-bias stability (sub-μg), whereas large
bandwidth is  crucial  in  acoustic  and vibration measure-
ment applications3. The requirements of some typical ap-
plications will be reviewed here.
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Fig. 1 | Typical  specifications  of  potential  application  scenarios

of MOEMS accelerometers.
 

Application of inertial navigation
Based on Newtonian mechanics law, the inertial naviga-
tion system measures the acceleration and angular accel-
eration  of  the  carrier,  taking  the  time  integral  and  then
transforms the  obtained  data  into  the  navigation  co-
ordinate system to obtain the velocity, yaw angle and po-
sition information. Accelerometer is one of the key com-
ponents  of  the  inertial  navigation  system.  The  working
environment  of  inertial  navigation  system  includes  air,
ground and underwater, which requires the acceleromet-
er to have a strong anti-environment disturbance ability.
For inertial guidance long-range missiles, 70% of the pre-
cision depends on the guidance system. This poses a sig-
nificant challenge for the accelerometer to feature an ex-
cellent acceleration measurement  precision and zero bi-
as stability.  Also,  the  size  of  the  inertial  navigation  sys-
tem  as  well  as  the  accelerometer  should  be  considered
due  to  the  limited  carrying  capacity  of  various  aircrafts
and  underwater  vehicles.  Because  of  the  advantages  of
high precision, small size and anti-electromagnetic inter-
ference, MOEMS accelerometers have good prospects for
the application of inertial navigation. 

Application of building monitoring
Small deformation  would  cause  cracks  or  other  cata-
strophic  losses  in  structures  such  as  buildings  and
bridges.  Accelerometer  can  help  detect  flaws  and  give
early  warning  by  measuring  the  vibration  of  buildings,
thus, playing  a  key  role  in  the  building  monitoring  sys-
tem. There  are  some  limitations  of  traditional  accelero-
meters in such applications due to their complicated wir-
ing, difficulty  in  multi-point  measurement  and  electro-
magnetic susceptibility. As a comparison, MOEMS accel-
erometers  have  strong  anti-electromagnetic  disturbance
ability and higher precision, and some types of MOEMS
accelerometers such  as  fiber  grating  based  acceleromet-
ers can  realize  long-distance  and  distributed  measure-
ment,  which  helps  to  break  through  these  limitations4.
Therefore,  MOEMS  accelerometers  have  potential  for
large-scale  applications  in  structural  health  detection  of
buildings  and  bridges,  as  well  as  vibration  detection  of
aircraft wings5. 

Geophysical applications
Geophysical applications mainly contain seismic, drilling
process monitoring, resource exploration, monitoring of
earth  tides  and  volcanic  activity,  etc.  The  seismic
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monitoring, which can be further divided into minor and
strong seismic monitoring,  requires  a  noise  level  of  bet-
ter than 1  and 1 , respectively, and
the  frequency  band  shall  cover  0.0083−50  Hz.  Drilling
monitoring includes  transverse,  axial  and  torsional  vi-
bration measurement. Gravity based applications such as
resource  exploration,  gravity-aided  navigation,  earth
tides  and  volcanic  activity  monitoring,  pose  a  challenge
to ultra-high  sensitivity  and  superior  low  frequency  re-
sponse. Accelerometer is the core component of a gravi-
meter, so  that  high  performance  MOEMS  acceleromet-
ers would have a broad prospect in such applications6. 

Daily applications 

Automotive electronics
In the  field  of  automotive  electronics,  typical  applica-
tions  including  airbag,  anti-skid  brake  system,  electric
suspension,  navigation  control  all  require  acceleration
measurement. Automotive  electronics  applications  usu-
ally do  not  need  a  high  precision  but  have  a  high  de-
mand for size and cost. Thus, several MOEMS accelero-
meters  with simple structure and low cost,  such as  light
intensity  based  accelerometers,  can  be  well  applied  in
such scenes. 

Movement monitoring
Motion monitoring makes use of the output value of the
accelerometer to  build  the  connection  between  the  out-
put and the daily exercise of human body, such as sitting,
standing, running, jumping, and cycling with the help of
skin temperature,  heart  rate  and  other  information  ob-
tained from different sensors. This helps to provide pro-
fessional training  assistance  and  guidance  for  the  sub-
jects,  so  as  to  achieve  accurate  adjustment  of  training
volume and intensity. Due to the long running time, the
accelerometers  are  required  to  feature  good  long-term
stability and low power consumption. 

Medical diagnosis
Accelerometers can be used to assist diagnosis and treat-
ment of patients with motor disorders or joint problems.
Similar  to  motion  monitoring,  this  kind  of  application
puts  requirements  on  accelerometer  with  good  ductility
and long-term  stability,  as  well  as  low  power  consump-
tion.  Optical  fiber  based  MOEMS accelerometers  which
are adapted to different environmental conditions might
be feasible in this application. 

Different MOEMS accelerometer types
As  shown  in Fig. 2,  a  MOEMS  accelerometer  usually
consists of  an  acceleration  sensing  structure  and an  op-
tical  displacement  measurement  unit.  The  former  is  to
convert  the  applied  acceleration  to  a  displacement,
whereas the latter one is to detect the displacement. The
performance of two parts determine the overall perform-
ance  of  the  accelerometer  together.  In  this  paper,  the
MOEMS accelerometers are broadly divided in three cat-
egories according  to  the  principles  of  optical  displace-
ment measurement unit.

Since  the  birth  of  the  first  optical  accelerometer7,8,
MOEMS accelerometers  have  seen  a  steady  improve-
ment  in  both  the  micro-manufacturing  technology  and
optical measurement  principle.  Regarding  the  manufac-
turing  technology,  the  emerging  techniques9,10 such  as
additive manufacturing11−13 and SOI-MEMS technology14

open a  path  towards  high  performance  and  multifunc-
tional MOEMS accelerometers.  While  the  optical  meas-
urement  principles,  go  through  three  stages  in  general,
from the geometric optics schemes based on light intens-
ity,  to  the  wave  optics  based  schemes  (based  on
wavelength,  frequency,  phase,  etc.),  and  recently  to  the
light-matter  interaction  based  new  optomechanical
schemes,  as  shown  in Fig. 2. The  precision  is  also  im-
proved  with  the  innovation  of  measurement  principle
and  the  advances  in  technology.  The  geometric  optics
based scheme measures the displacement of a proof mass
under the application of an external acceleration through
variation of  the amplitude or intensity of  light,  thus ob-
taining  the  magnitude  of  the  acceleration.  This  scheme
usually has a simple structure along with a large dynam-
ic  range,  but  is  with  limited  precision.  Compared  with
the geometric optics based scheme, the wave optics based
schemes  yield  a  profound  improvement  of  precision.
Wave optics  based schemes can usually  be  explained by
scalar  diffraction  theory  approximation,  and  they  are
such  a  kind  of  optical  accelerometers  that  have  been
studied most  and  widely  used  at  present.  The  new  op-
tomechanical schemes make use of the basic mechanism
of the interaction between light and matter at the nano-
scale,  which can push the sensitivity beyond the state of
the  art,  or  even  exceed  the  standard  quantum  limit
(SQL).  This  kind  of  MOEMS  accelerometer  came  into
being later but holds the promise of ultra-high perform-
ances, and most of the schemes are in the stage of prin-
ciple verification and rapid development. 
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Geometric optics based MOEMS accelerometers 

Principle
Geometric optics based MOEMS accelerometer is a kind
of accelerometer which senses the displacement or accel-
eration by directly modulating the radiation intensity of
light.  As  it  is  subject  to  acceleration,  the  proof  mass  in
the  accelerometer  generates  an  inertia  displacement,
which directly changes the output light intensity. In con-
junction with the acceleration-displacement sensitivity of
the  acceleration  sensing  structure,  it  is  able  to  calculate
the  magnitude  of  the  input  acceleration.  This  kind  of
MOEMS accelerometer  has  advantages  of  simple  struc-
ture and low cost,  but  it  is  usually  difficult  to  guarantee
its  precision  due  to  the  relatively  high  susceptibility  to
the fluctuation of  incident  light  source  and external  en-
vironment. 

Light-intensity based accelerometers
One of the first reported geometric optics based acceler-
ometer was proposed by Abbaspour-Sani et al.8,  and the
schematic  is  shown  in Fig. 3. The  measurement  prin-
ciple  is  as  follows:  an  LED  source  emits  light  vertically,
while the light flux received by the diode changes accord-
ingly with the lateral displacement of the shutter in terms
of  external  acceleration.  Two photodetectors  containing
dark and transparent fringes are placed in light and dark
environments,  respectively,  to  achieve  a  common  mode
suppression to compensates the temperature drift  of the
detector.  The  accelerometer  has  a  linear  response  range
of ±84 g, a resonant frequency of 3.2 kHz, while the sens-
itivity is less accurate than 0.1 V/g. Similar grating shut-
ter  based  demonstrations15,16 hold  advantages  of  simple
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setup and low cost, but the performance cannot meet the
high precision requirement.
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Except the grating shutter, waveguides can also be ex-
ploited to  serve  as  the  light  intensity  modulation  com-
ponent  of  an  accelerometer.  In  2004,  Plaza  et  al.17 de-
signed a light intensity detection scheme based on wave-
guides.  As  shown  in Fig. 4,  a  mass  is  connected  to  the
frame by four beams, and a waveguide is attached to the
mass  as  a  sensing  element,  self-aligning  with  the  input
and  output  waveguides  on  the  frame.  The  proof  mass
shifts along the z axis when subjected to a vertical accel-
eration,  which  will  cause  two  misalignments,  and  then
modulate  the  light  intensity.  The  mechanical  sensitivity
is around 1 μm/g, and the optical sensitivity in both pos-
itive  and  negative  directions  are  169.824%/g and
147.911%/g, respectively.  The  accelerometer  has  the  ad-
vantage  of  capability  of  measuring  acceleration  in  two
different directions with a reduced potential stress due to
the  mechanical  design.  However,  the  application  of  this
type of accelerometers remains limited by the high envir-
onmental  susceptibility  and  relatively  low  precision18−21,
as shown in Fig.5.

It can be seen that most of the light intensity based ac-
celerometers hold a simple light path and low sensitivity,
but there still are several avenues to improve the sensitiv-
ity. For example,  as  what  conventional  MEMS accelero-

meters  did22−24,  modifying  the  mechanical  design25−28 to
construct an ultra-sensitive mass-spring system is an ef-
fective  way,  even  though  it  has  compromise  among  the
sensitivity  and  bandwidth,  as  well  as  dynamic  range.  In
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2016, Hammond et al.23 reported an accelerometer based
on  a  geometric  anti-spring  system.  As  shown  in Fig. 6,
the proof mass is suspended to a rigid frame by a spring
system, whose elastic constant changes with the displace-
ment  of  the  mass.  The  accelerometer  has  an  extremely
low  resonant  frequency  and  high  acceleration-displace-
ment sensitivity.  When the accelerometer works, the in-
ertia  displacement  of  the  proof  mass  adjusts  the  light
flux, and then changes the current output of the photodi-
ode. The sensitivity of the accelerometer can reach down
to  41  due to  its  extremely  low  elastic  con-
stant.
 
 

SEM of the

MEMS device MEMS device

1 mm 10 mm

Shadow sensor

Cantilever

flexure

Heater

Thermometer

Copper thermal shield

(cut away to show interior)

MEMS

device
LED

Photodiode

behind MEMS

device

Current

stabilizing

resistor

Anti-spring

flexure pair

Constrained axis

Proof mass

Fig. 6 | The  experimental  setup  along  with  the  mechanics. Fig-

ure reproduced with permission from ref.23, Springer Nature.
 

ng ·Hz−1/2

Similarly,  Tu  et  al.24 put  forward  an  ultra-sensitive
light  intensity  based  accelerometer  later  in  2019.  An
asymmetrical  spring  system,  which  is  composed  of  two
curved beams and two folded  beams,  serves  as  the  con-
nection between  the  proof  mass  and  the  frame,  provid-
ing  the  ultra-high  acceleration-displacement  sensitivity.
A slit is located in the center of the proof mass, as shown
in Fig. 7, so that the light flux through it can change with
the  displacement  of  the  proof  mass,  thus  changing  the
output of  the  quadrant  diode.  The  sensitivity  of  the  ac-
celerometer is down to 8.16  due to the elastic

structure  design  with  ultra-low  elastic  coefficient.
However,  the  improvement  of  sensitivity  is  achieved  by
reducing the  elastic  coefficient  rather  than  optical  ap-
proaches, which inevitably  leads  to  the  decline  of  band-
width  (below  1  or  even  0.1  Hz),  dynamic  range  (~mg
range), and other performances.
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To sum up, the MOEMS accelerometers based on geo-
metric  optics  are  capable  of  achieving  simple  structure
and  low  cost  measurement  of  acceleration,  because  no
high requirements for light sources and detectors are in-
volved.  Nevertheless,  the  measurement,  especially  the
optical displacement measurement unit,  would be signi-
ficantly affected by the fluctuation of the light source and
environmental factors. Thus, this type of MOEMS accel-
erometer has some limitations in high precision accelera-
tion  measurement  even  though  there  is  some  room  to
modify the mechanical sensing unit. 

Wave optics based MOEMS accelerometers 

Principle
The  optical  displacement  measurement  unit  of  a  wave
optics based accelerometer is based on the wave aspect of
light. When the accelerometer is subjected to an external
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acceleration,  the  inertia  force  leads  to  a  displacement  of
the proof  mass,  which  causes  the  wavelength  (or  fre-
quency/phase)  change.  By  detecting  the  corresponding
change, the displacement and the input acceleration can
be  obtained  with  relatively  higher  sensitivity  due  to  the
accurate scale of the wavelength compared with the amp-
litude  of  light.  According  to  the  form  and  measuring
principle of  the optical  displacement measurement unit,
the MOEMS  accelerometers  of  wave  optics  are  sub-
divided  into  grating  interferometric  cavity,  FBG,  Fabry-
Perot cavity and photonic crystal, etc.-based categories. 

Grating interferometric cavity scheme
Regarding the grating interferometric cavity based accel-
erometers, the core sensing unit is a cavity of grating in-
terferometer. It  is  a  kind  of  micro  cavity  that  is  com-
posed  of  a  movable  diffraction  grating  (or  grating  light
valve). The variation of the cavity length changes the in-
tensity  of  the  emitted  light  by  modulating  the  optical
path  difference.  Taking  the  wavelength  as  the  ruler,  the
grating interferometric cavity is  able to achieve the sub-
nanometer  scale  precision,  thus,  paves  the  way  for  the
higher  precision  acceleration  measurement.  Moreover,
this  type of  MOEMS accelerometer  has  compact  optical
path and setup, so it also has advantages in miniaturiza-
tion and integration.

μg ·Hz−1/2

At the end of last century, Cooper et al.29 built the first
accelerometer based on grating light value in light of the
probe displacement measuring mechanism of an atomic
force  microscopes.  The  schematic  diagram  is  shown  in
Fig. 8(a).  The  movable  interdigital  fingers  on  the  proof
mass  and  the  fixed  interdigital  fingers  on  the  silicon
frame constitute a grating light valve.  The incident laser
beam strikes the grating light valve vertically, and the in-
put acceleration drives the proof mass to have an out-of-
plane displacement. The displacement of the movable in-
terdigital  fingers,  which  are  fixed  on  the  mass,  changes
the  output  light  intensity  of  the  interference  diffraction
beams  of  the  grating  light  valve.  The  displacement  and
the acceleration  can  be  calculated  by  detecting  the  out-
put  light  intensity.  This  MOEMS  accelerometer  has  a
resonant frequency of 906 Hz and a noise equivalent ac-
celeration  (NEA)  of  less  than  2 , which  out-
performs most  of  its  previously  reported  geometric  op-
tics based accelerometers. However, neither the mechan-
ical  sensing  unit  was  modified  nor  other  factors  were
considered such as the parallelism and cross-axis sensit-
ivity. Based upon it, Loh et al.30 modified the mechanical

ng ·Hz−1/2

acceleration  sensing  structure,  as  shown  in Fig. 8(b) by
designing  a  crab  leg-shaped  beam-mass  structure.  This
improved the sensitivity and reduced the cross-axis sens-
itivity of the MOEMS accelerometer. The measured NEA
can  reach  down  to  40 .  However,  its  proof
mass  center  of  gravity  does  not  coincide  with  the  beam
plane,  so  that  the  cross-axis  sensitivity  is  still  large.
Moreover, the technology maturity is not high due to the
lack of packaging and back-end design.
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Hall et al.31 made further improvements to the grating
light  value  based  MOEMS  accelerometers.  As  shown  in
Fig. 9, a compact grating interferometric cavity compris-
ing a diffraction grating and a reflective film on the proof
mass replaces the grating light valve, so that the reliabil-
ity and stability of both optical and mechanical units are
enhanced.  In  addition,  the  accelerometer  integrates  the
electrostatic  force  feedback  electrodes,  which  can  not
only  maintain  working  in  the  position  with  maximum
sensitivity,  but  can  also  adjust  the  mechanical
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performances  by  Q-control.  This  accelerometer  has  a
thermal-mechanical  noise  level  of  43.7 ,  and
the cross-axis sensitivity is also diminished by modifica-
tion of  the  mechanical  structure.  On  this  basis,  the  au-
thors  further  designed  a  phase-modulated  diffraction
grating32, shown in Fig. 10, to eliminate the zeroth-order
reflections of  the  grating  interferometric  cavity,  and  in-
creased the energy efficiency of the signal from less than
30% to  around 80%,  thus,  finally  improved the  sensitiv-
ity of  the  MOEMS  accelerometer.  Later  in  2016,  com-
mercial  products  of  grating  interferometric  cavity  based
accelerometer  came out.  The seismometer  developed by
Silicon  Audio  is  oriented  for geophysical  applications,
which  is  able  to  achieve  the  sensitivity  of  less  than  1

,  while  other  performances  such  as  dynamic
range and bandwidth are acceptable as well.
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At  the  same  time,  the  grating  interferometric  cavity
based  accelerometer  also  derived  a  lot  of  improved
demonstrations.  The  measuring  principle  improving
schemes include  advanced  higher  interference  diffrac-
tion order scheme33−35, phase modulation and demodula-
tion scheme36−39,  closed-loop feedback scheme40−42, com-
pensation  scheme39,43,  etc.  whereas  the  sensing  structure
improving  schemes  include  different  structural
designs44,45 and different material designs46, which are all
presented in Fig. 11.

μg ·Hz−1/2

ng ·Hz−1/2

In  summary,  the  grating  interferometric  cavity  based
accelerometer is one type of the accelerometers based on
the wave aspect of light. They were born at the end of last
century  and  developed  at  the  beginning  of  this  century.
The  technology  maturity  and  performances  have  been
exceedingly improved over the past two decades. By op-
timizing  the  structure,  introducing  phase  modulation
and various  subdivision  means,  the  NEA  of  interfero-
metric cavity based accelerometers can universally break
through  1 , and  in  some  cases  can  reach  be-
low 100 . In addition, the cavity based optical
displacement measurement unit  can be easily integrated
with the  mechanical  sensing  structure,  bringing  the  ad-
vantages  of  small  size  and  high  stability.  In  the  future,
this  type  of  MOEMS  accelerometer  will  be  developing
towards higher  precision,  smaller  size  and  stronger  en-
vironmental adaptability through deep light field manip-
ulation and further optimization of structural and mater-
ial  design  in  light  of  different  application  requirements.
However, the further reduction of the size of the optical
cavity  will  lead  to  the  prominent  problem  of  nanoscale
effect. In order to approach or exceed the SQL, the devel-
opment of this type of MOEMS accelerometers is bound
to  go  beyond  the  scope  of  the  grating  interferometric
cavity. 

Fiber Bragg grating scheme
The optical  displacement  measurement  unit  of  the  FBG
based  accelerometers  is,  namely,  a  Fiber  Bragg  Grating.
When an external acceleration is applied, the inertia dis-
placement  of  the  proof  mass  produces  the  strain  of  the
FBG, and changes the wavelength of the output light un-
der the effect of strain. By detecting the wavelength vari-
ation, the acceleration can be obtained. FBG based accel-
erometer  is  a  kind  of  MOEMS  accelerometers  which  is
widely studied  and  applied  extensively  at  present  be-
cause of its unique advantages such as good ductility and
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multi-point  measurement  ability.  The  measurement
principle,  performances,  advantages  and  disadvantages
of several  kinds  of  FBG  based  accelerometers  are  re-
viewed below.

ng ·Hz−1/2

In 1996, Kersey et al.47 reported an original FBG based
accelerometer.  The  schematic  diagram  is  shown  in Fig.
12, in which the FBG is arranged on an elastic structure
made  of  compliant  materials.  The  external  acceleration
deforms the elastic structure, and then changes reflected
wavelength of  the  FBG,  which  is  detected  by  interfero-
metric method. This accelerometer has the sensitivity of
1  and a bandwidth of 2 kHz. Although it is of
relatively low  sensitivity  and  is  vulnerable  to  environ-
mental  influences,  its  advantages  of  the  simplicity,  low
cost and multi-point measurement ability lead research-

ers’ efforts  in  the  development  of  this  type  of  MOEMS

accelerometer.
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FBG  based  accelerometer  is  a  good  candidate  for  the
building and infrastructure monitoring due to its capab-
ility  of  multi-point  measurement.  For  example,  Linze  et
al.48 proposed a multi-point FBG based accelerometer, as
shown in Fig. 13(a). When subjected to an external accel-
eration, the  mechanical  transducers  induce  birefrin-
gence variations within the fiber and in turn change the
polarization state, which appears as a power variation as
a  result.  The  FBGs  reflect  light  from  different  positions
of the fiber,  thus,  enabling the wavelength multiplexing.
Such setup  is  able  to  provide  sub-micrometer  displace-
ment  resolution  and  excellent  sensitivity  under  the
premise of  the multi-point measurement function49. Re-
searchers also had some attempts to make the FBG accel-
erometers  compatible  in  the  monitoring  applications.
Mita  et  al.50 proposed  an  FBG  based  accelerometer  in
2001,  as shown in Fig. 13(b). The accelerometer is  com-
posed  of  an  L-shaped  rigid  cantilever  beam,  a  proof
mass,  a  spring  and  a  Bragg  grating  element.  The  Bragg
grating element is not directly attached to the cantilever
but  is  placed  onto  the  cantilever  to  avoid  the  uneven
strain.  Similar  design  could  be  found  in  Guo’s51 report
for  seismic  measurement.  The  advantage  is  that  the
cross-axis sensitivity is small, and the mechanical design
ensures a uniform strain distribution of FBG, thus main-
taining  a  good  sensitivity  over  a  large  amplitude  range.
However,  this  design  sacrifices  the  lifetime  compared
with  other  demonstrations  of  the  same  type.  Similarly,
Antunes et al.4 have proposed a modified FBG based ac-
celerometer  for  the  same  application.  The  use  of  a
square-shaped leaf spring minimizes the cross-axis sens-
itivity and has a balance of the dynamic range and sensit-
ivity.  Khijwania’s52 design  of  a  small  all-optical  FBG
based accelerometer, in which the vibration of the sensor
replaces  the  inertia  displacement  of  the  proof  mass,
showing a good vibration monitoring performance.

FBG based accelerometers53−60 are also suitable for the
tilt angle  measurement,  which  is  an  application  of  con-
tinuing interest in the field of aviation and civil engineer-
ing due to its advantages of being inherently self-referen-
cing  and  the  capability  in  multiplexing,  electrically  free
operation,  immunity  to  radio  frequency  interference
(RFI), and compact size, etc.

Most recently,  more  attention  has  been  paid  to  im-
prove  the  performances  of  FBG  based  accelerometers.
Obviously,  sensitivity  is  an  important  parameter  for  the
FBG  based  accelerometers,  so  that  many  attempts  and

theoretical studies have been made to improve it61−63. Re-
searchers make their efforts from both the perspective of
interior design of fiber, and external setup or mechanic-
al design.

Regarding the design of fiber, Tilted Fiber Bragg Grat-
ing (TFBG) is a special FBG to be pointed out, which can
efficiently  couple  the  light  between  the  core  mode  and
cladding  modes64−70.  In  2009,  Guo  et  al.5 proposed  a
scheme based on TFBG. As shown in Fig. 14(a), it  has a
taper structure for core mode and cladding. By connect-
ing the modes of core and cladding with taper, it  is able
to  extract  the  fluctuation  of  the  reflected  power  of  the
low-order  cladding  mode  caused  by  bending,  which  is
proportional to the external acceleration. This character-
istic enables the self-calibration function of the accelero-
meter.  The  dynamic  range  of  the  accelerometer  is
0.5−12.5 g,  and  the  resonant  frequency  is  adjustable,
while  the  typical  value  is  51  Hz.  The  greatest  advantage
of the accelerometer lies in that the fiber does not need to
be  stretched,  but  is  embedded  into  the  solid  substrate,
which  maintains  a  long-term  reliability  and  small  size.
On the basis of it, Helan et al.71 optimized the tilt angle of
TFBG,  as  shown  in Fig. 14(b), which  achieves  the  max-
imum  ghost  peak  reflectance.  Such  type  of  sensing  unit

 

12 mm

Bragg grating

CaseMassLeaf springFiber cable

L

A

y

yg

B

b

a

Spring K1

Acceleration

mass M

Bragg grating

K2

Fiber under test (FUT)

Oscilloscope

Shaker 3Shaker 2Shaker 1Polarizer

Circulator
ASE

source

Photo

diode

Tunable

optical filter

FBG3FBG2FBG1

MT1 MT2 MT3

S3S2S1

Optical

Electrical

a

b

Fig. 13 | (a)  Schematic  of  a  multi-point  FBG  based  accelerometer.

(b) Simplified model and physical picture of an FBG based accelero-

meter. Figure reproduced from: (a) ref.48, Optical Society of America;

(b) ref.50, SPIE.

   Opto-Electronic Advances       https://doi.org/10.29026/oea.2021.200045

200045-10

© 2021 Institute of Optics and Electronics, Chinese Academy of Sciences. All rights reserved.



can  be  applied  to  vibration72 and  bending  measure-
ment73, as well as the inclinometer74.
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Some others used novel mechanical design to increase
the sensitivity  of  FBG based accelerometers75.  As  shown
in Fig. 15,  this  design adds a buffer layer to increase the
distance between the central  axis  of  the cantilever  beam
and the Bragg grating, and in turn enhances the sensitiv-
ity which is proportional to the distance. The additional
buffer layer has no influence on the natural frequency of
the structure  and  the  strain  transferred  from  the  canti-
lever to  the  FBG.  It  has  the  advantages  of  simple  struc-
ture, improved sensitivity without compromising on the
bandwidth and other characteristics76.
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Fig. 15 | An FBG based accelerometer  with  an  additional  buffer
layer. Figure reproduced with permission from ref.75, Elsevier.
 

Birefringence  splitting  of  FBG  reflection  peak  mainly
contributed by  fiber  embedding  should  be  avoided  be-
cause  it  would  degrade  the  performance  of  the  optical
readout, and further the accelerometer. There are a lot of
attempts  in  order  to  address  this  issue63,77−81. For  ex-
ample,  Todd  et  al.82 designed  a  no-fiber  embedded
scheme,  as  shown  in Fig. 16(a). The  proof  mass  is  wel-
ded  sandwiched  between  two  parallel  plates,  and  the

FBG is attached to the bottom surface of the lower plate.
The displacement of the proof mass driven by the accel-
eration  deforms  the  bottom  FBG.  The  wavelength  shift
can be  obtained  by  both  Fabry-Perot  and  interferomet-
ric means. The unembedded design, shown in Fig. 16, re-
duces the possibility of birefringence splitting of the FBG
reflection peaks and transverse strain-induced. Someone
also  designed  an  FBG  based  accelerometer  to  eliminate
the  multi-peak  phenomenon  by  using  two  sub-beams
and a proof mass. Two ends of FBG were stuck between
the  beam  and  the  cushion  block,  so  as  to  improve  the
resistance and sensitivity of transverse interference.
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Weight is  another  factor  to  consider  in  the  applica-
tions of FBG based accelerometers. In 2018, Galv et al.83

developed  a  low-weight  accelerometer  for  structural
health monitoring  in  the  field  of  aerospace  by  combin-
ing the  FBG  and  Additive  Manufacturing  (AM)  pro-
cesses. As shown in Fig. 17, the accelerometer is based on
a compliant cylinder with a mass placed on the top and
supported by a linear spring fitted with FBG. The inertia
displacement of the proof mass under the application of
an external acceleration drives the FBG to produce axial
strain, and changes the output wavelength. The accelero-
meter has the sensitivity of 19.65 pm/g and a bandwidth
of 500 Hz. It can be used extensively for a variety of prac-
tical applications  due  to  the  advantages  of  small  damp-
ing,  sufficient  rigidity,  light  weight  and  high  resolution.
However, the cross-axis sensitivity is still large. Similarly,
Li et al.84 proposed a micro FBG based accelerometer, in
which the length of the vibration arm is only 7 mm. The
modified structure helps reduce the size of this accelero-
meter,  overcoming  the  tradeoff  between  the  sensitivity
and  resonant  frequency.  Wei  et  al.85 also  proposed  a
miniature FBG vibration sensor, shown in Fig. 18, whose
elastic  structure  is  composed  of  a  hinge  and  an  elastic
plate. This brings together the advantages of  both mini-
aturization of the sensor and suppressing lateral interfer-
ence, and the total mass is only 5 g.
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In general, the FBG based accelerometers measure the
stress, strain, and thus the acceleration through the vari-
ation of the Bragg wavelength. This type of MOEMS ac-
celerometer  has  received  the  most  extensive  attention

mg ·Hz−1/2 μg ·Hz−1/2

over  the  past  30  years,  and  extends  its  application  from
the  basic  single-point  acceleration  measurement  to  the
practical use such as building health monitoring. Regard-
ing  the  performances,  the  sensitivity  is  pushed  forward
from the NEA of around  to  level.

The advantages of resistance to electromagnetic inter-
ference, low loss, good extension, small volume, and light
weight enable  the  applications  of  FBG  based  accelaro-
meter in the complex environment. In addition, the mul-
tiplexed  FBG  based  accelerometers  provide  an  effective
solution for the implementation in large infrastructures.
However,  FBG is vulnerable to the influence of ambient
temperature and is difficult to compensate. Furthermore,
the detection  of  the  wavelength  usually  requires  a  com-
plicated readout, which makes the integration difficult. 

Fabry-Perot cavity scheme
Fabry-Perot cavity  is  another  candidate  of  optical  dis-
placement measurement  unit  for  a  MOEMS  accelero-
meter. As it is subject to acceleration, the inertial force of
the proof  mass  drives  the  end  face  of  the  cavity,  chan-
ging the reflection or transmission spectrum. By analyz-
ing the  spectrum,  the  magnitude  of  the  input  accelera-
tion can be obtained. For MOEMS accelerometers,  fiber
is  always  employed  to  construct  a  compact  Fabry-Perot
cavity because its end surface is a natural candidate for a
component of the cavity. Herein we review several types
of  Fabry-Perot  cavity  based  accelerometers,  including
their principles and performances.

Figure 19 shows an early demonstration of the Fabry-
Perot  cavity  based  accelerometer,  which  is  proposed  by
Gerges86 in 1989. The accelerometer is composed of two
identical  hemispherical  Fabry-Perot  interferometers.
Two  identical  spherical  metal  mirrors  attached  to  the
diaphragm at center, one on each side, forming the out-
er mirrors of the interferometers, while the distal ends of
the fiber serve as the inner mirrors. The variation of the
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optical phase is proportional to the applied axial acceler-
ation  within  the  elastic  limit  of  the  structure.  Setup  of
two  identical  interferometers  enables  common  mode
suppression, which is able to eliminate the side effects of
temperature, environment and cross-coupling. This early
accelerometer  has  an  ideal  sensitivity  of  2.2×10-7

 and a resonant frequency of 450 Hz. It is noted
that  even  early  demonstration  of  Fabry-Perot  cavity
scheme  can  achieve  ultra-high  sensitivity  (
level)  by  using  lock-in  or  other  techniques87 but  with
trade-offs  on  some  other  performances  (for  example,
bandwidth < 40 Hz).
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In recent years, many attempts have been made to fur-
ther improve the sensitivity without compromising oth-
er  performances  by  means  of  mechanical  design88−91 or
modification of the Fabry-Perot cavity92−95.

Mechanical amplification  is  an  effective  way  to  im-
prove  the  sensitivity.  For  example,  Davies  et  al.96 intro-
duced a V-beam structure prior to transduction to amp-
lify the displacement of the proof mass. As shown in Fig. 20,
the Fabry-Perot cavity comprises the gold-coated silicon
block in  the  middle  of  the  V-beam  and  at  the  end  sur-
face of a cleaved optical fiber, which acts as both the in-
put and output mirrors.  The inertia displacement of the
proof  mass  makes  the  V-shaped  structure  compress
along the x direction and expand in the y direction, mod-
ulating  the  Fabry-Perot  cavity  length,  which  thus
changes the wavelength of the output light. The accelero-
meter  has  a  bandwidth  of  approximately  10  kHz  and  a
maximum mechanical  magnification of  18.6.  The use of

a  V-shaped  beam  allows  the  sensitivity  enhancement
without  compromising  the  bandwidth.  Moreover,  the
displacement  as  well  as  the  acceleration  measurement
sensitivity  are  mechanically  adjustable.  However,  the
structure  is  unstable  and  the  dynamic  range  is  limited.
Utilizing  a  high-speed  white  light  interferometry  (WLI)
demodulation algorithm to achieve the Fabry-Perot cav-
ity interrogation is another way to improve the sensitiv-
ity. Zhao et al.97 proposed a fiber optic Fabry-Perot accel-
erometer with  WLI,  using  fast  full-spectrum  WLI  de-
modulation scheme, the sensing system can achieve high
dynamic range, high precision, and high speed simultan-
eously.
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based  accelerometer. Figure  reproduced  with  permission  from

ref.96, Elsevier.
 

ng ·Hz−1/2

Cavity optomechanics98−102 has attracted increasing re-
search interest for both fundamental studies and practic-
al applications,  and this paves the way for highly sensit-
ive Fabry-Perot cavity based accelerometers. Cervantes et
al.103 presented a  modified  Fabry-Perot  cavity  based  ac-
celerometer that combines a monolithic fused quartz os-
cillator  and  a  fiber  micro-cavity  together,  in  which  the
oscillator is of low-loss and compatible with optical cav-
ity.  This  type of  accelerometer  can reach a  sensitivity  of
100 .  The  length  determination  of  similar
demonstrations104,105 enables traceability  to  the  Interna-
tional System of Units, and can obtain high sensitivity as
well as  a  large  bandwidth  simultaneously  at  room  tem-
perature,  while  the  tradeoff  is  the  increased  complexity.
Several  simple  means  such  as  employing  a  45-degree
mirror in a cavity106,107 can improve the sensitivity of the
system by increasing optical  light path without affecting
the resonant frequency108.

There  are  expensive  efforts  put  in  improving  other
performances  apart  from  the  sensitivity.  Someone  tried
to  perform  multi-axis  detection  in  one  accelero-
meter109−112,127.  As  for  the  Fabry-Perot  cavity  based
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accelerometer,  in  2011  Lin  et  al.90 designed  a  multi-axis
accelerometer by arranging the three headers  orthogon-
ally, as shown in Fig. 21. The inertia displacement of the
proof mass is detected by a micro-mirror installed in the
center of it, and a fiber cracked at the end is fixed in the
V-groove  to  ensure  the  surface  is  parallel  to  the  micro-
mirror, forming a Fabry-Perot cavity. The accelerometer
has the sensitivity of 48 ,  a bandwidth of 160
Hz, along with the advantage of multi-directional meas-
urement.
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Fig. 21 | Structure of a multidirectional Fabry-Perot cavity based
accelerometer. Figure reproduced with permission from ref.113,  IOP

Publishing.
 

Other  researchers  tried  to  combine  the  optical  fiber
with the Fabry-Perot cavity to construct high multifunc-
tional  sensors,  which  are  capable  of  detecting  a  wide
range  of  physical  parameters  such  as  dynamic
strain113−116,  temperature114−119,  vibration120−123,  pres-
sure124,125,  and refractive index119,126.  Also,  some attempts

have been made to measure acceleration128−130, whilst sev-
eral demonstrations are represented in Fig.22. Jia et al.130

presented  an  active  temperature-compensated  fiber
Fabry-Perot  accelerometer  that  can  measure  vibration
and temperature simultaneously.  By attaching all  silicon
in-line fiber Fabry-Perot etalon to a surface of triangular
cantilever  and  attaching  mass  blocks  at  the  free  end  for
vibration  measurement,  a  proportional-integral-derivat-
ive (PID) algorithm of temperature compensation is used
for feedback  control  of  laser  wavelength  to  realize  syn-
chronous measurement of acceleration and temperature.
Zhu et  al.120proposed  an  all-fiber  vibration  sensor  based
on the fiber Fabry-Perot interferometer, in which the op-
tical  fibers  are  chemically  etched  into  cantilever  beams
and proof mass, and further protected by a quartz tube to
ensure the sensor can be adapted to different practical re-
quirements.

m ·Hz−1/2

In recent  decades,  Fabry-Perot  cavity  based  accelero-
meters have gained increased attention due to their high
sensitivity,  compact  structure,  and  simple  optical  path.
The  theoretical  performances  of  the  Fabry-Perot  cavity
based accelerometer could be very high, for example, the
improved noise equivalent displacement of the optical displa-
cement sensing unit can reach as low as 10-14 ,
and the corresponding acceleration measurement sensit-
ivity is sub-μg level. The performance and form are flex-
ible and adjustable113,131−137 according to different applica-
tion requirements.  However,  it  requires  high  microma-
chining precision, and may suffer from poor repeatability
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and dynamic range due to the limited cavity length. 

Photonic crystal scheme
For  photonic  crystal  based  accelerometers,  the  optical
displacement sensing measurement unit is usually a one-
or two-dimensional photonic crystal waveguide. Photon-
ic crystals have photonic band gap, which has a selectiv-
ity for the wavelength of the light propagating in. The ex-
ternal acceleration deforms the periodic  photonic struc-
ture, thus breaking and changing the selectivity. The ac-
celeration  is  obtained  by  detecting  the  variation  of
wavelength (or other properties of light). Photonic crys-
tal accelerometers usually have a large bandwidth due to
their high Q value, and they also have high device com-
pactness.  Herein  we  present  the  principles,  properties,
advantages and  disadvantages  of  several  typical  demon-
strations of photonic crystal based accelerometers.

In  2004,  Jaksic  et  al.138 proposed a  MOEMS accelero-
meter based on a photonic crystal waveguide containing
defects coated on a diaphragm, as shown in Fig. 23. Two
defects  are  embedded  in  the  photonic  crystal  structure,
in which only  a  single  local  mode is  allowed to  propag-
ate.  The  local  mode  of  two  defects  is  the  same  and  the
transmission through the waveguide is the largest in ab-
sence of external acceleration, while the external acceler-
ation  will  change  the  local  mode  of  the  defects,  causing
the transmission  peak  mismatch  and  transmission  in-
tensity reduction. This early photonic crystal based accel-
erometer shows the advantages of simple manufacturing,
all-optical signal communication, and high chip integra-
tion, but the precision is not high and the performance is
subjected to the experimental factors.
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Fig. 23 | An  early  demonstration  of  MOEMS  accelerometer
based on photonic crystal. Figure reproduced with permission from

ref.138, IEEE.
 

Photonic crystal structures include one-139,140 and two-
dimensional141 photonic crystals, which can both be used
as  the  optical  sensing  unit.  Typical  one-dimensional

photonic  crystal  based  accelerometer  is  shown  in Fig.
24142.  The  optical  sensing  unit,  a  one-dimensional
photonic  crystal,  consists  of  alternating  silicon  and  air.
When  there  is  an  external  acceleration,  the  interdigital
silicon fingers attached to the proof mass move along the
sensing  direction,  changing  the  periodicity  condition,
which alters the central  wavelength of the output mode.
The advantages are that the accelerometer has linear re-
sponse to the applied acceleration in the whole measure-
ment range, low cross-axis sensitivity, high reliability and
integration.
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The  same  author  also  designed  a  two-dimensional
photonic  crystal  accelerometer  based  on  wavelength
modulation141. This scheme consists of a laser diode light
source,  an  adjustable  Add-Drop  filters  (ADF)  based  on
the principle  of  ring  resonator  (RR),  photoelectric  de-
tector  and  an  integrated  waveguide.  The  coupled  light
with  wavelengths  meeting  the  RR  conditions,  is
propagating  into  the  RR  and  is  then  coupled  into  the
drop  waveguide.  As  shown  in Fig. 25,  while  an  external
acceleration is applied, the displacement makes the radi-
us  of  the  RR  larger,  which  leads  to  a  redshift  of  the
wavelength of  the  output  resonance  mode.  Both  amp-
litude and  direction  of  the  acceleration  can  be  inter-
preted by detecting the wavelength shifts  in  the readout
system.

Currently,  the  research  about  photonic  crystal  based
accelerometers is  gaining  rising  attention  and  rapid  de-
velopment143.  This  kind  of  accelerometer  usually  has  a
high  Q  value,  along  with  the  reasonable  sensitivity  and
bandwidth.  How to improve the environmental  stability
and enhance the repeatability (both in performance and
fabrication  process)  is  the  development  priority  of  this
kind of MOEMS accelerometer, and it is also the route to
the  practical  application.  In  addition,  Maybe  the  future
trend  of  photonic  crystal  accelerometers  is  to  combine
with other elements, such as near field.
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Summary of wave optics based accelerometers

ng ·Hz−1/2

As mentioned earlier,  MOEMS accelerometers based on
the  principle  of  wave  optics  can  generally  improve  the
performances,  especially  the sensitivity,  when compared
to  the  geometric  optics  based  accelerometers.  They  can
be well adapted to different applications due to the vari-
ous forms. Among them, the grating interferometric cav-
ity based accelerometer is a MOEMS accelerometer with
a relatively high precision, and the NEA can easily reach
down to 100  or even lower. FBG based accel-
erometer is  the  most  widely  studied  and  used  accelero-
meter. Its  unique  high  ductility  enables  applications  in
building  monitoring  and  other  fields,  but  it  has slightly
mediocre  performance  in  sensitivity.  Fabry-Perot  cavity
and photonic  crystal  based  accelerometers  feature  high-
er sensitivity. Correspondingly, they have higher require-
ments  for  micro-machining  precision,  the  maturity  of
which  still needs  to  be  improved.  Wave  optics  based
MOEMS  accelerometers  are  gradually  approaching  the
SQL,  which  cannot  be  broken  through  by  the  standard
scalar  diffraction  theory  because  of  the  approximations
and assumptions  involved  in.  However,  this  big  class  of
MOEMS accelerometer still has good technical advance-
ments  and  scene  adaptivity  to  many  applications,  and
therefore still has a large room for development. 

New optomechanical accelerometer
Aforementioned MOEMS accelerometers  based  on geo-
metric optics and wave optics have relatively high preci-
sions, large dynamic ranges,  as well  as electrical  insulat-
ing properties  due  to  the  advantages  of  the  optical  dis-
placement  measurement  unit,  and  can  be  applied  to
many  application  scenes.  However,  regarding  the
propagation  characteristics  of  light,  these  two  kinds  of
MOEMS  accelerometers  both  make  approximations  to
some degrees,  which not  only  provide  an inaccurate  in-
terpretation of the nanoscale optical effects, but also lose
the high-frequency  information in  the  near-field.  In  or-
der to break through the sensitivity limit of the MOEMS
accelerometer, for example, approaching or even exceed-
ing  the  SQL,  researchers  experimented  with  light  field
manipulation  in  scale  of  sub-wavelength  and  utilization
of light-matter  interaction,  to  push  the  sensitivity  bey-
ond the state of the art.

ng ·Hz−1/2

ng ·Hz−1/2

Taking  advantages  of  surface  plasmon144,145 is an  ef-
fective means  to  break  through  the  sensitivity  limit  be-
cause  it  is  able  to  extract  the  near-field  information
which is  dissipated  in  the  far-field  optics.  Surface  plas-
mon can be realized in principle by coupling the evanes-
cent waves  through  a  prism,  by  nano-fabricated  meta-
structures146,  or  by  bringing  a  close  nano-sized  light
source,  whereas  the  nano-fabricated  structure  is  more
feasible  for  accelerometers.  Early  in  2003,  Carr  et  al.147

from Sandia  laboratory  designed  a  sub-wavelength  dis-
placement sensing  structure  based  on  coupling  of  sur-
face plasmons,  which  comprises  a  period-reduced  silic-
on grating  pair  and an  absorption layer  made  of  silicon
nitride. This structure was proved to have an equivalent
noise displacement of fm·Hz−1/2 level. On the basis of the
displacement  sensing  structure,  the  authors  constructed
a near-field  MOEMS accelerometer  in  conjunction with
the serpentine beams and electrostatic  actuation148,149,  as
shown in Fig. 26, which achieves an NEA of 17 
and  a  mechanical-thermal  noise  level  of  8 .
Extremely high sensitivity and small size make it a com-
pelling  device  that  holds  the  promise  of  applications  in
molecular  force  detection,  friction  dynamics  and  other
fields,  whereas  the  large-scale  application  of  this
MOEMS accelerometer is stymied by the relatively com-
plex structure and micromachining process.

fm ·Hz−1/2

In 2012, Painter et al.150 designed another type of sur-
face  plasmon  based  accelerometer,  in  which  a  zipper
photonic-crystal nanocavity serves as the superior optic-
al displacement readout of  level, as shown in
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μg ·Hz−1/2

Fig. 27.  The zipper  nanocavity151,152,  shown in Fig. 27(a),
enables an imprecision near the SQL, allowing the accel-
erometer  to  break  through  the  SQL  by  using  additional
high Q-factor mechanical design and strong thermo-op-
tomechanical  backaction  to  damp  and  cool  the  thermal
motion of the proof mass153. The dimensions of the mass
and  the  elastic  structure  are  both  in  micrometer  scale,
which enable  high  integration  and  dynamic  perform-
ances. The MOEMS accelerometer can achieve a practic-
al  noise  equivalent  acceleration  of  10  while
maintaining a bandwidth of more than 20 kHz and a dy-
namic range of greater than 40 dB. However, there is still
some room for the performance improvement due to the
small proof mass and lack of designated optimization of
the acceleration sensing structure.
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Fig. 26 | SEM of  the  near-field  MOEMS accelerometer  based  on
vertically  stacked  sub-wavelength  nano-gratings. Figure repro-

duced with permission from ref.149, Elsevier.
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fm ·Hz−1/2

Other  forms  of  surface  plasmon  based  cavity  also
proved themselves as potential candidates of ultra-sensit-
ive optical displacement readout with high compactivity.
For example, Kim154,  Zobenica155 and Wong156 all repor-
ted  surface  plasmon  based  sensors,  shown  in Figs.
28(a)−28(c), which have a noise level of , and

ng ·Hz−1/2
further enable functionalities of highly sensitive accelera-
tion  (10  or  even  lower),  weight  and  torque
detection.  But  one  should  take  into  account  that  these
sensors  are  still  limited  in  applications  in  terms of  their
demanding  requirements  for  working  environment
(cryogenic  or  vacuum) and micromachining design and
process.
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There  are  still  several  demonstrations  of  practical
MOEMS accelerometers based on surface plasmon coup-
ling  by  means  of  nanocavity  or  nanostructure,  such  as
the designs proposed by Rogers157, Feng158, and Lu159, etc.
However,  the  performance  is  not  perfectly  correlated  to
the physical  picture.  More specifically,  the schemes util-
izing the coupling of  surface plasmon would have relat-
ively low sensitivity if one just serves the sub-wavelength
structure as a diffraction unit.  We have to take the con-
sideration  of  the  mechanical  design  and  the  transfer
function of final output versus input together during the
performance estimation of a MOEMS accelerometer.

The  light-matter  interaction  of  the  optomechanical
cavity receives extensive attention over the past decades,
and it is the other avenue to realize the ultra-sensitive ac-
celeration  measurement,  which  has  been  identified  as
one  of  the  most  effective  gravity  estimation
methods160−162. Recently, researchers are leading their ef-
forts  in  the  miniaturization  of  the  cavity,  thus  pushing
the  light-matter  coupling  scheme  into  the  region  of
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compact MOEMS accelerometer.
Underpinned  with  the  quantum  investigation  of  the

theoretical  effectiveness  of  measuring  acceleration
through  light-matter  interaction163−165,  several  typical
compact  optomechanical  cavity  forms  were  performed.
As shown in Fig. 29,  the matter could be a microdisk166,
an elastic mechanical mirror164,  a nanosphere165,  and the
cavity could be ring shaped167,  etc.  On the basis of these
theories and cavity apparatuses, MOEMS accelerometers
feature  sub-ng resolution  and  down  to  sub-μGal·Hz-1/2

noise  level,  such  as  Purdy168 and  Abend’s169 demonstra-
tions, shown in Figs. 30(a) and 30(b). The compact ultra-
sensitive  optomechanical  accelerometer  has  also  been
successfully employed  to  practical  applications  combin-
ing with classical accelerometers to obtain a long-period
navigation-grade stability170.
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The underlying idea of the light-matter interaction, or
more  specifically,  the  cavity  optomechanics  is  not  the
topic of this review. Ones could refer to ref.102,171 to have
a comprehensive understanding of the field and applica-
tions. In addition, although gravimetry is a kind of accel-
erometer,  it  has  a  wide  extension,  and  includes  a  lot  of
sub-categories,  while  all  of  these  are  not  fully  discussed
in this paper.

To  sum  up,  the  research  of  new  optomechanical
MOEMS  accelerometers  has  been  accelerating  rapidly

since its birth in the new century. This type of MOEMS
accelerometer surpasses  the  limitation  of  scalar  diffrac-
tion  theory  in  terms  of  the  measurement  principle.  By
extracting  the  high  frequency  information  of  the  near-
field or quantum states through the light-matter interac-
tion, the accelerometer is able to approach or exceed the
SQL.  A  variety  of  new  demonstrations  are  constantly
emerging while the researchers pay more attention to the
breakthrough  of  the  measurement  principle  at  present
and try to draw the physical picture of the nano-scale be-
hind the  phenomenon.  As  a  result,  the  technology  ma-
turity is  generally not high, and most of the demonstra-
tions remain just a proof-of-principle,  which is far from
being  implemented  in  applications.  In  the  future,  the
new optomechanical  MOEMS  accelerometers  will  pur-
sue both the innovation of the mechanism and design, as
well as the technical feasibility and maturity, which can-
not only push forward the theoretical performances, but
can also strive to translate the advanced principle to the
advanced  technology  and  devices  to  meet  the  rising
requirements. 

Conclusion and prospect
MOEMS  accelerometers  have  progressed  significantly
since  the  first  demonstration  was  reported  in  1980s.  By
taking  the  advantages  of  both  the  MEMS  and  optical
sensing  technologies,  MOEMS  accelerometers  are  now
capable  of  achieving  impressive  level  of  performances.
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This paper  first  analyzes  practical  and  potential  de-
mands  of  applications  for  MOEMS  accelerometers,  and
then roughly divides the accelerometers into three main
categories  in  terms  of  the  optical  sensing  principle.  The
performances, especially the sensitivity, are generally in-
creasing from the geometric optics based, to wave optics
based, and  finally  to  the  new  optomechanical  accelero-
meters, as listed in Table 1. However, it should be noted
that  each  category  has  its  own  merits  and  demerits,
which are adapted to different requirements. Also, not all
applications require  extremely  high  sensitivity  or  preci-
sion. For  example,  the  geometric  optics  based  accelero-
meters usually have a relatively simple structure and low
cost, one can routinely measure mg scale accelerations in
daily  applications  by  using  this  type  of  accelerometer.
The  wave  optics  based  accelerometers  are  extensively
studied and contain a lot of sub-categories, and some are
able  to  provide  μg performance  adapted  to  applications
such as inertial navigation, while some specialize in oth-
er  performances  such  as  multi-point  and  multi-axis
measurement.  The  new  optomechanical  accelerometers
have been demonstrated to hold the promise of realizing
ultra-high sensitivity, which can approach or even being
pushed beyond the SQL. However, they are not yet ripe,
let alone enter the large-scale application stage.

In  the  following  decades,  the  community  of  MOEMS
accelerometer will  continue  to  flourish,  while  much  ef-
fort  would be expended to collaborative design for both
optical and mechanical components, improvement of the
technological maturity,  as  well  as  advance precision mi-
cromachining. Researchers will  also strive to further de-
velop more reliable accelerometers with higher perform-

ances for specific  applications  including  inertial  naviga-
tion and microgravity measurement, as well as emerging
and as yet unknow applications.
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